
Agentic AI Course for Developers

Introduction

This course is designed to help developers build intelligent, autonomous systems—AI

agents—that can reason, plan, and take action using modern frameworks like LangChain,

LangGraph, and no-code tools such as n8n. You’ll learn how to design and deploy agents

that use tools, integrate APIs, manage memory, and collaborate with other agents to solve

complex tasks. The course combines theory, hands-on labs, and real-world projects, guiding

you from simple workflows to fully deployed multi-agent applications with monitoring, safety,

and scalability built in.

CURRICULUM:

Sr. No. Contents



1

Anatomy of Agents + LangChain Single-Agent Basics 

Theory / Concepts
What is an “agent” in AI context: perception,
reasoning, action, memory.
Different types of agents (tool-using, planner,
reactive, etc.).
When to use an agent vs simpler chain / pipeline.

Hands-On with LangChain
Install LangChain, set up environment.
Build a basic LangChain agent: define some tools
(e.g. search, calculator), set up a prompt, run agent
on simple inputs.
Explore LangChain’s “Build an Agent” tutorial:
agent with search tool and memory.

Deliverable
A working single-agent script / small app that can
do queries, use tools, maintain simple
conversational memory.

2

Improving Single Agents – Memory, Tool Chains, Error
Handling

Theory / Concepts
Memory types (short term, long term), retrieval
augmented generation (RAG).
Tool chaining (having an agent invoke multiple
tools/steps in order).
Error handling and fallback strategies.

Practical Work
Extend your single agent: add vector store memory
for past interactions.
Add more tools; build chains (e.g. search ?
summarization ? answer).
Handle errors: what if tool fails, or retrieval returns
bad content.

Deliverable
Enhanced agent with memory storage + fallback
logic; tests with failing tool & recovery.



3

Introduction to LangGraph – Graphs, Nodes, State,
Control Flow

Theory / Concepts
What is LangGraph: graph-based orchestration on
top of LangChain. Difference vs simple agents.
Components: nodes (agents/tools), edges (control
flow), state (carried along), commands (goto,
update).
When to use LangGraph: for workflows, branching,
multi-step agents, multi-agent etc.

Hands-On
Install LangGraph.
Create simple LangGraph workflow: maybe two
nodes: node A gets user input; node B uses tool;
control flow linear.
Visualize or log the state transitions.

Deliverable
Working graph workflow, showing state transitions;
simple linear graph.

4

Branching, Conditional Logic & Memory in LangGraph

Theory / Concepts
Branching: how to decide which node to call next
(conditional edges).
Updating state: how nodes can update state and
influence future nodes.
Memory management inside graph: persisting
results, caching, summarization, etc.

Lab
Build a graph that branches: e.g. if query needs
real-time info ? call search tool; else, use memory
or stored context.
Use state to remember past interactions and
influence branch decisions.

Deliverable
Graph workflow with branching (at least one
conditional), memory usage, state updates.



5

Multi-Agent Patterns: Supervisors, Role Agents,
Parallelism

Theory / Concepts
What multi-agent means in LangGraph:
independent agent nodes, how they are connected
(edges).
Supervisor/ Orchestrator agent pattern.
Parallel node execution vs sequential; trade-offs.

Practical
Build a system with multiple agents: e.g. one agent
researches, another formats, another verifies. Use
supervisor to route tasks.
Demonstrate parallel vs sequential execution.

Deliverable
Multi-agent graph: at least 3 agents cooperating
under supervision; also document latency or cost
differences between parallel & sequential.

6

Hierarchical & Team Architectures in LangGraph

Theory / Concepts
Hierarchical agents: teams under supervisors,
nested graphs.
Edge cases: how top-level supervisors manage
teams, how state is partitioned or shared.
Handling complex workflows: how to keep them
maintainable.

Lab
Build a team-based agent structure: e.g. Team A
handles research + data fetching; Team B handles
summarization + formatting; top-level supervisor
coordinates between them.
Include team agents running possibly in parallel,
merging outputs.

Deliverable
Hierarchical multi-agent project prototype. Share
architecture diagram + code.



7

Example Revisions / Reflect Agents + Feedback Loops

Theory / Concepts
Agents that “reflect” or critique: improve output via
cycles.
Revision loops: generate ? reflect ? revise.
How to build critique agents and integrate them.

Practical
Use an existing open-source multi-agent example:
e.g., “report writer” with multiple agents (plan,
generate, reflect, critique) using LangGraph.
(Repo: botextractai / ai-langgraph-multi-agent)
Modify or extend: add more revisions or change
criteria.

Deliverable
Report producer with reflection loops; evaluate
improved output vs first draft.

8

Tool / API Integration & Security

Theory / Concepts
How to integrate external tools / APIs safely.
Permissions & scope: limiting what each agent can
do.
Input sanitization, output validation, policy checks.

Lab
Add agents that call external APIs (e.g. weather,
search, data APIs).
Include guard nodes: checks to ensure outputs
meet safety / policy criteria.
Possibly sandbox tool execution if coding tools are
used.

Deliverable
Graph with agents invoking external services;
safety checks implemented; example malicious /
malformed input handled gracefully.



9

Observability, Testing, and Metrics

Theory / Concepts
Logging per node, state trace, time/latency, errors.
Defining metrics: accuracy, cost (API/LLM tokens),
time, user satisfaction.
Testing workflows: unit tests for nodes, integration
tests for the graph.

Practical
Instrument one of your existing graph workflows
with logs/traces.
Create tests: feed in known inputs, assert outputs,
simulate failures.
Create basic dashboard (could be local, or simple
web UI) summarizing node performance.

Deliverable
Graph with tests; logging; a simple metrics
dashboard; report of analysis.

10

Deployment & Scaling

Theory / Concepts
Containerization (Docker), REST or other service
wrappers.
Scaling workflows: concurrent execution, queueing,
rate-limit, cost.
State persistence: vector DB, state DB,
checkpointing.

Lab
Wrap your multi-agent graph system in a service
(FastAPI or Flask).
Containerize it. Possibly deploy locally or to cloud
(AWS/GCP/Azure).
Use persistent storage for state / memory (vector
DB or Postgres + embeddings).

Deliverable
Deployed prototype (could be simple staging);
documentation on scale, environment; performance
observations.



11

Multi-Agent Capstone Kick-Off

Theory / Preparation
Define capstone project: scope, agents, roles,
workflows, tools needed.
Architecture design: graph structure,
supervisor/hierarchical setup, memory, safety,
observability.
Team roles & division of labor.

Project Starts
Students / teams pick their project. Examples:

A multi-agent assistant that gathers data,
verifies, writes, and formats outputs (e.g.
report).
Multi-agent system for customer service:
routing, knowledge fetching, response
generation.
Workflow for content generation + review +
scheduling.

Build initial nodes & graphs; set up basic
interactions.

12

Capstone Finalization & Presentation

Practical Completion
Complete all agent nodes, integrate tools, reflection
or feedback loops.
Add testing, safety checks, logging & monitoring.
Deploy or simulate deployment; possibly wrap with
UI or API.

Presentation & Review
Each team presents: architecture diagram, demo,
issues faced, trade-offs made, future
improvements.
Compare different projects; peer review.

Learning Outcomes:



By the end of this course, participants will be able to:

Create and execute effective digital marketing campaigns independently.

Use SEO and keyword research to increase website visibility.

Manage Google Ads and Meta Ads with data-driven targeting.

Analyze performance through analytics and reporting dashboards.

Develop social media and content strategies that drive engagement.

Apply email marketing and conversion optimization techniques effectively.

Demonstrate the ability to work as a digital marketing expert or freelancer.

Contribute to organizational growth through strategic online branding.

Course Benefits:

Learn directly from industry professionals with real-world experience.

Gain hands-on exposure through live projects and campaign simulations.

Improve career and freelancing opportunities in Pakistan and abroad.

Master advanced advertising techniques across Google, Facebook, Instagram, and

LinkedIn.

Build confidence in content creation, marketing strategy, and analytics reporting.

Understand how to use AI tools and automation to improve performance.

Earn a recognized certification that enhances professional credibility.

Skill-Wise Earnings:

Skill Level Avg Monthly Salary

Junior 75k-100k

Mid-Level 100k - 170k



Advanced 250k- 450k

Freelancer Earn in millions

Affiliation & Collaboarations

 


